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This lecture highlights recent accomplishments of a line of research in basic technology of lhe tinite
element method (FEM) pursued by the author at the University of Colorado over lhe past six years. The
research began in 1987 with modest goals: to develop high-performance plale and shell finile clements with
unconventional techniques, in particular the Free Formulation and the Assumed Natural Strain method,

These approaches. although successful. did not fit the standard variational framework of canonical
functionals. Efforts to "varationalize" success led to a number of discoveries discussed below. As of this
writing the next logical step of this research is the orderly production of finile clement templates (detined
below) as well as further development of a theoretical foundation that explains and justities their existence.
The application of templates to element-level error estimation also appears promising but will also require
a sounder theoretical basis.

A finite element template, or simply template. is a parametrized algebraic form that yields a continuum
of convergent finite elements of fixed type. Here by "type" is meant an element selected for a specific
application and with a given degree-of-freedom (dol) configuration; for example a 3-node. 9-dof Kirchhoff
plate bending triangle. A fom1 that yields all convergent elements of a given type is called an 1Illil'crslIl

template. A fDlnl that yields a practically useful subset is called a generic template. where "generic" is used
in the biological sense of "pertaining to a genus."

Obtaining an explicit universallemplate may be viewed as "closing the book" on an element type once
and for all. For multidimensional elements. however, universal templates can become too complex or bck
physical transparency. In such cases a generic template may represent a viable compromise.

Why are templates worth studying? Four reasons. taken from a recent survey paper [ljmay be offered.
(i) The confusion associated with the vast number of elements claimed in the literature clears up: such

elements become merely "points" in a parametric continuum. This important point is further discussed
in Section 7.

(ii) Construction and testing of parametrized finite-element libraries can be simplified.
(iii) Another realm of mesh adaptivity upens up: cor t adaptation (the prefix is not fully decided as of this

time), in which programs can pick up elements from the parametrized continuum 10 strive for maximum
accuracy on ajixedmesh.

(iv) Several persistent mysteries may be clarified: convergence. mixability, accuracy. locking. SpuriOllS
modes, and distortion sensitivity. With further theoretical advances such properties could be traced to
components of the template and interpreted physically.



From a FEM teacher's viewpoint, (i) is particularly endearing. Unification has the potential of stream-
lining the teaching of finite element theory, and hence release precious instruction time to cover problem
modeling aspects rather than spending class after class going over the "finite element catalog." From a FEM
implementor's viewpoint, (ii) and (iii) are clearly most important. From a problem modeler's viewpoint,
(iv) is of interest as a reliable way of avoiding surprises.

Aside from these specific concerns, the unification of all possible elements of given type is appealing
from an aesthetic standpoint. Developing an individual finite element with the usual techniques, essentially
unchanged since 1970, can take weeks or months; or even years if nonlinear and dynamic applications are
pursued. The end product, however, takes merely a "potshot" at the infinite number of element instances.

At the time of the author's doctoral work (1965-66) the finite element method was stillunsellled, although
the "core view" was rapidly solidifying. In that view the Finite Element Method (FEM)is regarded as a
subset of the Ritz-Galerkin approximation procedure with piecewise-polynomial conforming basis functions
of local support. The theoretical basis for this interpretation is sound, well developed and presumably
approaching a final form.

Forsaking this narrow but safe niche incurs risks but promises rewards. As usual the aphorism "no
pain, no gain" applies. Reward opportunities include increasing modeling and implementation flexibility,
potential for improved performance, and unification with other apprOXimation techniques. Risks relate to
the lack of a sound theoretical foundation. Experience has shown that theory may take decades to develop
and solidify, forcing adventurous researchers to rely on intuition and experimentation. Moreover, theory is
often spurred and shaped by successful heuristic advances.

Risks and rewards increase with distance from the core. In its vicinity one d~als with minor departures
from the Ritz-Galerkin canon exemplified by mixed principles and "variational misdemeanors" such as
numerical integration. Further away lie less understood devices: hybrid principles, nonconforming shape
functions, kinematic tricks and other variational crimes. Finally one reaches the largely uncharted domain
of the purely algebraic approach, where shape functions have disappeared, variational principles decline
in importance, and the FEM blends naturally with other methods such as finite differences and lumped-
parameter (lattice, Hrenikoft) models.

An important tool to escape the safe but confining FEM core has been the patch test. Originally developed
by Bruce Irons to heuristically explain the erratic behavior of nonconforming plate elements [2], it gained
publicity and respectability through the Strang-Fix monograph [3]. Following some perplexing behavior
noted during the 1970s, the test was put in a firmer ground by Taylor, Simo, Zienkiewicz and Chan [4].

Despite its virtues the conventional multielement patch test is and will remain a verification device: the
element has to be fully developed before it can be tested on a patch. The Individual Element Test (lET),
proposed in 1975 by Bergan and Hanssen [5], does not suffer from that deficiency. An underlying goal of
their development was to establish a test that could be directly carried out on the stiffness equations of a single
element - an obvious improvement over the multielement form. In addition the test was to be constructive,
i.e., used as a guide during element formulation, rather than as a post-facto check. Relationships between
the lET and the forms A, Band C of the patch test that were set out by Taylor et al. [4] are discussed in a
recent article [6].

The constructivity goal was achieved a decade later when the rules of the Free Formulation (FF) were



presented by Bergan and Nygard [7]. The key point of the FF is the decomposition of the element stiffness
matrix into a basic and a higher order part:

The basic stiffness Kb is responsible for verification of the lET and hence takes care of consistency. but is
generally rank deficient. The higher order stiffness Kh makes K attain the proper rank and is responsible
for stability and accuracy. Incompatible displacement assumptions used in this formulation only affect Kh.

The involvement of the author with the FF began in 1984. when joint work with Bergan resulted in the
development of two high-performance triangles for membrane and plate-bending analysis [8.9]. The higher
order stiffness of these elements was scaled so (I) becomes K = Kb + f:lKh• where the positive factor f:I was
used to improve behavior on coarse meshes through energy-balance techniques. The resulting Scaled Free
Formulation (SFF) represents an early instance of the use of parameters to attain better performance.

Another technique for development of high performance elements through direct strain interpolation
was pursued in the early I980s by several investigators. notably Bathe [10]. Hinton [II] and Park [12]. The
approach was labeled Assumed Natural Strains or ANS by Park and Stanley [12]. The end products were
plate and shell elements of high perfomJance despite their simplicity.

Neither SFF nor ANS initially conformed with a conventional variational framework. For the SFF the
"fitting" task was undertaken by the author in 1987. This was spurred by criticism from a reviewer of [8].
who justly observed that conclusions on the impressive performance of the element were largely based on
numerical results rather than theory. After several trials the SFF wa~ shown to be associated with a multifield
variational principle with one free parameter (the higher order stiffness scaling factor f:I) that "interpolated"
between hybrid versions of the Potential Energy and Hellinger-Reissner principles [13].

A variational justification of a particular case of the ANS formulation was obtained subsequently by
Militello and the author [14]. This variant was then reworked into the Assumed Natural Deviatoric Strain
(ANDES) formulation. ANDES was associated with another one-parameter hybrid multifield functional
that interpolated between the Potential Energy and Hu-Washizu functionals. A comparison of the SFF and
ANDES functionals led to a general 3-parameter reformulation of the classical ela~ticity functionals [15,16].
Principles associated with such functionals have been labeled Parametrized Variational Principles. or PVPs.
Subsequently multi field PVPs have been constructed for incompressible solids [17]. micropolar elasticity
[18] and linear electrodynamics [19].

To date the main application of PVPs to computational mechanics has been the construction of high-
performance finite elements (HPFEs). These are simple elements that can deliver engineering accuracy with
coarse discretization. A list of pertinent publications to date is provided in the survey article [I].

Some recurring features were observed during the development of specific HPFEs. In particular all
linear elements so far constructed fit the stiffness decomposition (I) in which the basic and higher-order
components take on the congruential matrix forms

Here c is the inverse of the element volume. area or length, f3 is a positive scaling factor, Land Th are
geometric matrices, E is the matrix. of elastic moduli, and S depends on the geometry and constitutive



b<:havior as well as th<:PVP in USe. In addition to fJ, matrices L, T" and S may contain free parameters.
Somc pertain [0 the gcncrating PVP while others do not. Parameters in L, which affect the basic stiffness
K/" should be the same for all elements in an assembly for otherwise the lET would fail. On the other hand,
parameters affecting the higher order stiffness K" may change from element to element without impairing
wnvergence as long as positiveness and proper rank is maintained.

The template conjecture asserts that (2) is the most general form for all convergent linear elements of
a given type ~where "type" is defined in Section I). The conjecture is readily proven in the case of simple
onc-dimensional elements such as bars or beams, for which universal templates are easily constructed [I].
But it is far from obvious for multidimensional elements.

Regardless of whcther the conjecture on the universality of (2) is proved or disproved in the future,
two illleresting consequences of the template concept are discussed next: element fingerprinting and direct
algebraic construction of K.

Consider a universal or generic template that depends on a set offree parameters. The template represents
an infinite number of elements. Each set of values yields an element instance, Some of these instances may
agree with "name" elements already published in the finite element literature. (Of course the probability of
hilling such elements is negligibly low should the values be selected randomly.) Therefore the parameter
set may be viewed as a "fingerprinting code" that identifies elements uniquely.

Sometimes the same element instance has been published two or more times under different names. If
the underlying formulations are not similar those duplications may be hard to catch. Fingerprinting via
templates, however, can resolve such identity puzzles without ambiguity.

It is legitimate to view (2) as a parametrized matrix form to be generated according to a set of rules.
These rules can be classified into essential and convenient. Essential rules insure that the element passes
the lET and that the higher order stiffness is orthogonal to constant-stress states. Convenient rules include
things such as enforcement of geometric invariance and use of deviatoric higher order strains.

The point to be stressed is that the rules may be applied as recipes without regard to the usual FEM
paraphernalia: shape functions, variational principles, weighted residual arguments, etc. At this stage we
have reached the vast expanse of the purely algebraic approach while dropping excess baggage along the
way. For many elements the utter simplicity of the finite difference approach is regained. And simplicity is
beauty.

In the Introduction of their seminal 1975 paper Bergan and Hanssen (5) write:

"An important observation is that each element is only represented by the numbers in its stiffness
matrix during the analysis of the assembled system. The origin of these stiffness coefficients is
unimportant to this part of the solution process."

This vision proved elusive because the direct construction of the entries of K without benefit of (2)
is actually a problem in nonlinear constrained optimization, which for but the simplest elements leads
to intractable matrix Riccati equations. If thus posed the problem becomes much harder to tackle than
through the familiar element construction methods. The template decomposition (2) and the concept of
parametrization combine to make a rule-based algebraic approach practically feasible.



The emergence of PVPs has suggested an innovative approach to a-posteriori error estimation of com-
puted finite element solutions. Let v denote the element node displacement vector retrieved from that
solution. The quadratic form

has the meaning of higher-order energy (HOE) absorbed by the elemen!. If the exact solution of the
problem consists of a constant stress state. this value vanishes over each clement. Similarly. as the solution
converges on account of mesh refinement. the element energy is increasingly dominated by the basic energy
Ub = ~vTKbV.

This heuristic argument shows that Uh may be regarded as a local error indicator: a number that goes
to zero in each element as the solution converges. Because only individual element information is required
in (3), the HOE indicator is said to be element level. Such indicators enjoy computational and logistic
advantages over those that require access to adjacent element information.

The connection of this concept to the theory of so-called Invariant Parametrized Variational Principles
(IPVPs) is outlined in the survey paper [1], where references to pioneer work that make use of this new idea
to drive mesh adaptation processes may be found.

The research path that starts from the lET and ends with templates is covered in a article sequence.
The first article [20]. which describes the evolution of the past test. has been completed and accepted for
publication. Sequel articles describing the direct algebraic approach to templates and element-level error
estimation are in preparation.
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