
GDBOF: A DEBUGGING TOOL FOR OPENFOAM R©

Juan M. Gimeneza, Santiago Márquez Damiána,b and Norberto M. Nigroa,b

aFacultad de Ingeniería y Ciencias Hídricas - Universidad Nacional del Litoral. Ciudad Universitaria.
Paraje ”El Pozo”. Santa Fe. Argentina. jmarcelogimenez@gmail.com, http://www.fich.unl.edu.ar

bInternational Center for Computational Methods in Engineering (CIMEC), INTEC-UNL/CONICET,
Guemes 3450, Santa Fe, Argentina, http://www.cimec.org.ar

Keywords: Data Structures, Debugging, OpenFOAM, gdbOF

Abstract. OpenFOAM R© libraries are a great contribution to CFD community and a powerful way to
create solvers and other tools. Nevertheless in this creative process a deep knowledge of classes structure,
both for value storage in geometric fields and for matrices resulting from equation systems is needed,
becoming a big challenge for beginners.
To help in this process a new tool, called gdbOF, attachable at gdb (GNU Debugger) is presented. It
allows to analyze class structures in debugging time. This application is implemented by gdb macros,
these macros can access to code classes and its data transparently, giving so, the requested informa-
tion. Tool is tested in different application cases, such as assembling and storage of matrices in a scalar
advective-diffusive problem, non orthogonal correction methods in purely diffusive tests and multiphase
solvers based on Volume of Fluid Method. In these tests several type of data are inspected, like internal
and boundary vector and scalar values from solution fields, fluxes in cell faces, boundary patches and
boundary conditions. As an additional feature data dumping to file is presented.
All these capabilities give to gdbOF a wide range of use not only in academic tests but also in real
problems.

Mecánica Computacional Vol XXIX, págs. 3441-3460 (artículo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)

Buenos Aires, Argentina, 15-18 Noviembre 2010

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.fich.unl.edu.ar
http://www.cimec.org.ar

1 INTRODUCTION

OpenFOAM R© is a CFD library that allows to the user to program different solvers and
tools (for pre-processing or post-processing) in a high-level specific language, understanding
for high-level the fact of writing in a notation closer to mathematical description of the prob-
lem, releasing the user from the internal affairs of the code.

This programming approach contrasts with procedural languages approach, such as Fortran,
that are widely used in academic and scientific environments but oriented to the low-level prob-
lem resolution, i.e., to the manipulation of individual floating-points values. Then, to abstract
from the low-level coding is necessary to use other approach, being adopted in this work the
Object-Oriented Programming (OOP) methodology. This methodology produces code that is
easier to write, validate and maintain than with procedural techniques. OOP paradigm exists
in many languages, such as SmallTalk or Eiffel, but for the development of this library C++
was chosen. It is less rigorously object-oriented than the others languages, because allows to
include different characteristics that are not strictly object-based. The main addon is operator
overloading, which is essential to interface the standard numerical notation in order to work
with tensorial, vector and scalar fields objects concept. Also, its is a multiplatform language
and, being based on C, is so fast as procedural languages (Cary et al., 1997).

Exists five fundamentals concepts in OOP, whereby OpenFOAM R© achieves its goal: modu-
lation, abstraction, encapsulation, inheritance and polimorphism. (Weller et al., 1998).

The modulation allows to subdivide the original problem into several subproblems. The ab-
straction consists in extracting essential aspects of an entity and ignore their accidental or irrele-
vant properties, therefore determines the level of detail. Encapsulation separates the contractual
interface of the abstraction from the implementation, then abstraction and encapsulation are two
complementary concepts: the first focuses on the observable behavior of an object, whereas the
second focuses on the implementation that leads to such behavior. These two features allow to
create abstract data types that represent real entities, i.e. tensor fields.

In addition, inheritance is the mechanism to define a new class (subclass) from another class
(superclass), so that the subclass inherits the structure (state) of the superclass through variables,
and the behavior through the methods. This allows to create new classes that include new behav-
ior without the need to modify existing classes. Polymorphism is the ability of objects to provide
same external interface but different internal implementations, thus complementing the inher-
itance. Focusing on OpenFOAM R© code, there is a proliferation of virtual methods (methods
that must be implemented in child classes), which allow the concept of polymorphism. Exam-
ples of this include the implementation of boundary conditions, which inherit from a base class
patchField, so they have the same interface but different implementations. Another example is
representation of tensorial fields: geometricField is the parent class and various tensor fields
inherit from it: with rank 0 called scalarField, rank 1 called vectorField and rank 2 called
tensorField, each implementing the interface that provides the parent class in different ways1.

In addition to these used OOP features, there are other tools of C++ language which are
not strictly object-based and are widely used in OpenFOAM R©, like the aforementioned opera-

1Simplification of structure, really more classes are involved.

J. GIMENEZ, S. MARQUEZ DAMIAN, N. NIGRO3442

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

tor overloading and the use of macros. Macros allows to insert code directly in the program,
avoiding the overhead of invoking a function (passing parameters to the stack, do a jump, take
parameters), without losing the readability of it (Eckel, 2000).

As it was mentioned, using these techniques generates a library oriented to high-level de-
velopment, ensuring that the user only have to take care about the model to solve and not in
other details of coding (Mangani et al., 2007). Nevertheless, for developers, problems arise
in applications creation which not yield the desired results. There begins the code debugging
work, and this includes monitoring values corresponding to variables involved in the resolution,
such as, float values in each of the points (cell centers or faces) of tensor fields, vector and/or
scalar values, coefficients in the system matrix, and many other examples. On the other hand,
debugging is not ever motivated by problems, but simply for exploratory or control purposes.
(Ewer et al., 1995)

The debugger software for excellence in GNU-Linux platforms is gdb (GNU-debugger),
which includes numerous tools for analyzing the code at runtime (Matloff and Salzman, 2008).
The developer, almost intuitively, links a series of numerical values (such as the values of a
field) to a contiguous array in memory. For these cases gdb offers a powerful print command,
which together with the dereference operators "*" and "@", let to see this sequence of values
in memory in a very simple way. The main problem for the developer, who wants to track
variables, is the needing of knowing the structure of the class tree of OpenFOAM R©. This prob-
lem gets worse when exploring data involves the polymorphism and inheritance with the virtual
methods widely used by the library. Exploring the general class tree looking for the attribute
class of the object which is wanted to observe the values, is a task that demands a considerable
loss of time. Moreover, once desired attributes are found, these maybe do not directly represent
the information required by the developer. In the case of the matrix generated by fvm, it stores
the coefficients using the technique of LDU Addressing (see appendix A), so it is necessary to
apply a decoding algorithm to transform it into the traditional format (full or sparse), and to
control and to operate with their values.

Solving the problems explained in the previous paragraph is the main objective of the tool
presented in this work, which is called gdbOF. This tool is implemented by gdb macros and is
based on an implementation of gdb macros for debugging the STL (Standard Library for C++)
(Marinescu, 2008). These macros simplify the task of debugging the OpenFOAM R© libraries,
performing the above actions transparently to the user: the simple call of a gdb macro from
console triggers a sequence of actions that include: navigate the OpenFOAM R© class tree, col-
lect information and reorder it for representation in a format readable by the user. Moreover,
gdbOF includes the option of writing the output into a file on disk. This output is formatted
appropriately to be imported in numerical computation software such as Octave or Matlab R©,
thus allowing the developer to expand the possibilities of data control in debugging time.

In this document several cases will be treated, all of them justifies the use of this new tool
as a quick way to check the flow of data and Finite Volume techniques by which some typical
tasks of CFD problems are solved. These problems not only emerge in academic circles but
also occur in real application environments: the first consists in a scalar advective-diffusive
problem, in which the emphasis will be placed on the assembling and storage of matrices, the
second consists in non orthogonal correction methods in purely diffusive tests, and the third is

Mecánica Computacional Vol XXIX, págs. 3441-3460 (2010) 3443

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

an analysis of Multiphase solvers based on Volume of Fluid Method.2

2 PROBLEMS WITH BASIC DEBUGGING

One of the most common tasks in the debugging process is to look at the values stored in an
array, that is possible in gdb with the command of Example 1, where v is the array to analyze.

Example 1 View array.

$(gdb) p *v@v_size

When analyzing class attributes is required, it is necessary to know the class inheritance
tree. It allows to interpret classes that contains other classes as attributes. To get the desired
information it is necessary to navigate through the pointers to find an specific attribute. A typ-
ical example is to verify in debugging time that a certain boundary condition is being satisfied
(typically when the boundary condition is coded directly in the solver and the next field infor-
mation is obtained after solving the first time-step). Boundary conditions in OpenFOAM R© are
established on each patch in each GeometricField, then, assuming that the patch of interest
is one whose index is 0 (the attribute BoundaryField has information of all the patches), to
observe the values on this patch the command presented in Example 2 is needed, where vSF is
a volScalarField.

Example 2 View Boundary Field values.

$(gdb) p *(vSF.boundaryField_.ptrs_.v_[0].v_)
@(vSF.boundaryField_.ptrs_.v_[0].size_)

Note that the statement in Example 2 doesn’t include any call to inline function, which can
generate some problems in gdb3, giving even more complex access to information.

gdbOF solves the inconvenience of knowing the attribute’s place and using long statements.
Using gdbOF commands, as it is shown in Example 3, the same results are obtained. Note the
simplification of the statement, this is the gdbOF spirit, reducing the work needed to debug and
perform the same tasks more simply and transparently.

Example 3 View Boundary Field values with gdbOF.

$(gdb) ppatchvalues vSF 0

An extra feature allows to define print limits. Choosing starting and ending indexes, only the
desired value range is printed. The gdbOF command is called ppatchvalueslimits (exists a

2gdbOF is tested in gdb 7.0 or earlier versions. It is known a issue with the version 7.1 about C string functions,
it produces crashes in some gdbOF commands.

3Inlining is an optimization that inserts a copy of the function body directly at each calling, instead of jumping
to a shared routine. gdb displays inlined functions just like non-inlined functions. To support inlined functions in
gdb, the compiler must record information about inlining in the debug information gcc using the dwarf 2 format
does this, and several other compilers do also. gdb only supports inlined functions when using dwarf 2. Versions of
gcc before 4.1 do not emit two required attributes (DW_AT_call_file and DW_AT_call_line); gdb does not display
inlined function calls with earlier versions of gcc. (Stallman et al., 2002)

J. GIMENEZ, S. MARQUEZ DAMIAN, N. NIGRO3444

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

similar called pinternalvalueslimits). In Pseudo-code 1 a pseudo-code of that implemen-
tation is presented.

Pseudo-code 1 Structure of gdbOF Commands ppatchesvalueslimits and
pinternalvalueslimits.

1. Get parameters: field name, limits and patchindex (only in patchvalueslimits)

2. Corroborate limits to print

3. Detect field type (Vol-Surface and scalar-vector-tensor)

4. Print the field values in its respective format

There are many examples in OpenFOAM R© like the previous one in which the necessity
of a tool that simplifies access to the intricate class diagram can be pondered. Note that in
the last example it wasn’t mentioned how the index of the desired patch is known. Usually
OpenFOAM R© user knows only the string that represents the patch, but not the index which is
ordered in the list of patches. Here gdbOF simplifies the task again, providing a command
that displays the list of patches with the respective index. The used command is presented in
Example 4.

Example 4 View patches list with gdbOF.

$(gdb) ppatchlist

Another important thing to take into account at debugging time is the scope of validity of
variables or object instances. To watch the values in a field or system of equations, it is necessary
to generate a gdb break statement in a line belonging to the scope of the analyzed variable. This
requires a previous code analysis prior to debugging or, at least, to recognize the object whose
variables are being tested. Here OpenFOAM R© introduces a further degree of complexity, and
it is the inclusion of macro C++ functions in the code, within which gdb cannot insert breaks.
So, to watch at the variables defined in this scope, it requires successive jumps in the code using
the commands step, next and finish.

Here, it was only the presentation of the problem and how the tool simplifies the tasks. For
a more complete reference about other gdbOF macros, gdbOF documentation is a valuable
reference.

3 ADVANCED DEBUGGING

3.1 System matrix

Increasing the complexity of debugging, it can be found cases in which not only looking for
an attribute and dereference it is the solution of the problem. A typical case is the presentation
of the system Ax = b generated by the discretization of the set of differential equations that are
being solved (to understand how the system is stored by OpenFOAM R© please read the appendix
A, which presents the LDUAddressing technique). This technique takes advantage of the sparse
matrix format and stores the coefficients in an unusual way. This storing format and the neces-
sity of accessing and dereferencing the values forces to trace the values one by one and, at every
step, assemble the matrix in the desired format. There are two commands to do this task, one

Mecánica Computacional Vol XXIX, págs. 3441-3460 (2010) 3445

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

for full matrices and other for sparse matrices.

In order to implement the necessary loops over the matrix elements, gdb provides a C-like
syntax to implement iterative (while, do-while) and control structures (if, else). These com-
mands have a very low performance, so the iteration over large blocks of data must be done
externally. gdbOF becomes independent of gdb for the assembly of matrix using another plat-
form: the lduAddressing vectors are exported to auxiliary files, and through calls to the shell
the calculation is performed in another language. In gdbOF, python is chosen due to its ability
to run scripts from console and having a simple file management, both to load and to save data.

It should be stressed that gdbOF macros for arrays include more complex options including
not to see the complete matrix (M × N), but only a submatrix determined by a starting pair
[row, col] and another finishing pair [row, col]. Respect to the code, it doesn’t represent more
than taking care in defining the limits of the loop that reorder the matrix. Next a diagram
that explains the command works pfvmatrixfull (with or without limits) is presented in the
Pseudo-code 2 and the diagram for the command pfvmatrixsparse (with o without limits) is
presented in the Pseudo-code 3.

Pseudo-code 2 Structure of gdbOF Command pfvmatrixfull.

1. Get paramaters

2. Get upper and lower arrays with gdb

3. Redirect data to aux file

4. Format auxiliary files: gdb format -> python format

5. Call python script to assemble the matrix

(a) Read auxiliary files

(b) Set limits

(c) Do lduAddressing (See appendix A)

(d) Complete with zeros

6. Format auxiliary files: python format -> gdb format

7. Show in output and save file in octave format

3.2 Mesh Search

Another group of macros are those that search in the mesh. The aforementioned inability of
gdb to perform loops on large blocks of data extents to the case of meshes, forcing thus to do
searching using other tools. Taking advantage that OpenFOAM R© contains a battery of methods
to accomplish these tasks, gdbOF chooses to create stand-alone applications to which call in
debugging time to do the job. Even though this way means creating a new instance of the mesh
in memory, the cost in time and development is lower than would be required to conduct the
search in the mesh in debugging, implementing the loops in the gdb C-like sintax, or in another
language such as python. These OpenFOAM R© applications are included in gdbOF package and
are compiled when the gdbOF installer is run.

J. GIMENEZ, S. MARQUEZ DAMIAN, N. NIGRO3446

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Pseudo-code 3 Structure of gdbOF Command pfvmatrixsparse.

1. Get parameters

2. Get upper and lower arrays with gdb

3. Redirect data to aux file

4. Format aux files: gdb format→ python format

5. Call python script to assemble the matrix

(a) Read aux files

(b) Do lduAddressing for sparse matrix

(c) Generate sparse file header

6. Format aux files: python format→ gdb format

7. Show in output or/and save file in octave format adding the header to the body

Cases of search in mesh that are typically covered by gdbOF are those which starts with a
point defined by [x, y, z], returning a cell index or values in some field, either in the center of
cell (volFields) or in each of its faces (surfaceFields).

Regarding to obtain the value of a field at some point there is no more inconvenient that
finding the index of the cell or index of the cell containing the point, whose centroid is nearest
of it. To do this, gdbOF uses a call to one of the applications that are compiled at installation
time, but the user only needs call the command in Example 5, where x, y, and z are the pa-
rameters passed by the user in the command call representing the (x, y, z) coordinates of the
point. That command returns two indexes: the index of the cell that contains the point, and
the index of the nearest cell. Afterwards, the user put one of these indexes in the command
pinternalvalueslimits to extract the field value in the cell centroid, or to observe the equa-
tion assembled for that cell with the command pfvmatrix.

Example 5 View cell index.

$(gdb) pfindCell x y z

A Pseudo-code of this tool is presented in Pseudo-code 4, note that it doesn’t exists any com-
munication between gdb and other platforms more that the shell call. The return of the results is
through temporal files, which must be generated in a particular format to be readable by gdbOF.
This technique is used because it is not possible to access to values in memory from one process
to another process.

Another kind of searching through the mesh is to find a list of indices of faces belonging
to a cell, this task operates in similar way. The user invokes a gdbOF command and this uses
a backend application. Nevertheless the simplicity of using the commands, the code is more
intricate because the storage of faces in a cell is not correlated, and the faces are subdivided in
internal or boundary faces (this requires walking through the list of faces in the mesh). It is also
needed to identify whether these faces are in the internalField or in one of the patches in the
boundaryField: the last option requires seeking what is the patch which the cell is belonging

Mecánica Computacional Vol XXIX, págs. 3441-3460 (2010) 3447

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Pseudo-code 4 Structure of gdbOF Command pfindcell.

1. Get parameters

2. Call FOAM app. to make the search

(a) Start new case

(b) Do search (how is explained in C)

(c) Save results in a temporal file

3. Read temporal file using a bash script

4. Show in output the indexes

to and what is the local index of the face within the patch. With this information is possible to
obtain the field’s value in that face. For more information see appendix C.

The gdbOF command psurfacevalues performs this search: given a cell, find the indices
of the faces that make up it and the value of the chosen field in each of these faces. See Example
6.

Example 6 View surface values

$(gdb) psurfacevalues surfaceField cellIndex

In pfindcell, the result stored on disk application was only necessary to parse and display
it on console, but in this case, the indexes that returns the application should be used to access to
an array containing the values of the field. To do that, this implementation requires to generate,
using a bash script, a temporal gdb macro because it is not possible in gdb to assign the result
of extracting data from a file to a variable. The Pseudo-code 5 presents this implementation.

Pseudo-code 5 Structure of gdbOF Command psurfacevalues.
1. Get parameters and check if it is a surfaceField

2. Call FOAM app. to make the search

(a) Start new case

(b) Do search (how is explained in appendix C)

(c) Save results in a temporal file

3. Read temporal file using a bash script

4. Through each index:

(a) Generate temporal macro

(b) Call macro (this macro prints the results)

Note that the temporal gdb macro is generated on the fly and is only functional for the param-
eters generated in the temporal code of the macro (Field name and location of the desired value),
but the loop in all faces of the cell is transparent to the user and it is not a problem for debugging.

J. GIMENEZ, S. MARQUEZ DAMIAN, N. NIGRO3448

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

4 TESTS

4.1 Scalar Transport Test

The first study case consists of the unsteady advective-diffusive equation, in a bidimensional
mesh with 3 × 3 cells, which is shown in Figure 1.

0 1 2

3 4 5

6 7 8

insulated2

fixed2

insulated1

fixed1

Figure 1: Geometry and patches in scalar transport test (numbers idenfies cells

Partial differential equation is presented in Equation (1).

∂ρφ

∂t
+∇ · (ρUφ)−∇ · (ρΓφ∇φ) = Sφ(φ) (1)

with the boundary conditions shown in Equations (2), (3) and (4).

∇φ · n|insulated = 0 (2)
φfixed1 = 373[K] (3)
φfixed2 = 273[K] (4)

To solve this problem, the following parameters are selected: U = [1, 0][m
s
], ∆t = 0.005[s],

ρ = 1[kg
m3], Γφ = 0.4[m2

s
], Sφ(φ) = 0 and φ0 = 273[K] ∀ Ω as initial solution.

In the Finite Volume Method, each cell is discretized as is shown in equation (5). (Jasak,
1996)

φnp − φ0
p

∆t
Vp +

∑
f

Fφnf −
∑
f

ΓφSf (∇φ)nf = 0 (5)

It is known that the assembly of a problem that includes convection using the upwind method,
results in a non-symmetric matrix, in addition, increasing the diffusive term and decreasing the
time step, this matrix will tend to be diagonal dominant.

Assembling the equation (5) in each cell for the initial time (t = 0.005), the system of
equations presented in (6) is obtained.

Mecánica Computacional Vol XXIX, págs. 3441-3460 (2010) 3449

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

202.6φ0 − 0.4φ1 − 0.4φ3 = 55271.4

−1.4φ0 + 202.2φ1 − 0.4φ4 = 54600

−1.4φ1 + 201.6φ2 − 0.4φ5 = 54545.4

−0.4φ0 + 203φ3 − 0.4φ4 − 0.4φ6 = 55271.4

−0.4φ1 − 1.4φ3 + 202.6φ4 − 0.4φ5 − 0.4φ7 = 54600 (6)
−0.4φ2 − 0.14φ4 + 202φ5 − 0.4φ8 = 54545.4

−0.4φ3 + 202.6φ6 − 0.4φ7 = 55271.4

−0.4φ4 − 1.4φ6 + 202.2φ7 − 0.4φ8 = 54600

−0.04φ5 − 1.4φ7 + 201.6φ8 = 54545.4

4.1.1 OpenFOAM R© Assembly

The above system, which was assembled manually, can be compared with the system ob-
tained by running the OpenFOAM R© solver scalarTransportFOAM. First of all a directory is
generated with the case described and solver is run in debug mode ($ gdb scalarTransportFoam).
Then, a break is set in a line of some class that is within the scope of the object fvScalarMatrix
containing the system of equations as is mentioned in the section 2.

Establishing a break in line 144 of the file fvScalarMatrix.C, and calling the gdbOF
pfvmatrixfull called, the matrix A of the system is printed on the console. This coincides
with the manually generated system, showing the the right performance of the tool.

Example 7 View system matrix with gdbOF

$(gdb) b fvScalarMatrix.C:144
$(gdb) run
$(gdb) pfvmatrixfull this fileName.txt
$(gdb) shell cat fileName.txt
202.60 -0.40 0.00 -0.40 ...
-1.40 202.20 -0.40 0.00 ...
0.00 -1.40 201.60 0.00 ...
-0.40 0.00 0.00 203.00 ...
...

(gdb) p *totalSource.v_@9
{55271.4, 54600, 54545.4, 55271.4 ...

An additional feature of this and other commands, is the ability to export data to a file for-
mat compatible with the calculation software Octave and Matlab R©. To do this only one more
parameter is needed in the command invocation, indicating the file name. gdbOF is responsible
for export in the correct format, which can be not only rows and columns of values, but also, in
[row,col,coeff] format. pfvmatrixsparse exports the matrix of the system in this format
which has a header that identifies the file as sparse matrix. This method greatly reduces the size
needed to store the matrices in the case of medium or large meshes.

J. GIMENEZ, S. MARQUEZ DAMIAN, N. NIGRO3450

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Expanding the explanation of the last section, here it is shown the use of ppatchs com-
mands. Suppose that is wanted to verify if the condition φ = 3734 in the patch called fixed1
is correctly set. First, it is necessary to know the index of this patch, as it is shown in Example 8.

Example 8 View patches list with gdbOF

(gdb) ppatchlist T
PatchName --> Index to Use
FIXED1 --> 0
FIXED2 --> 1
INSULATED2 --> 2
INSULATED1 --> 3
FRONT_AND_BACK --> 4

Knowing the patch index, it is possible to see its values, how it is shown in Example 9. There
is an array with three values corresponding to the boundary condition on each of the three faces
that make up this patch.

Example 9 View patch values with gdbOF

(gdb) ppatchvalues T 0
(gdb) $1 = {373,373,373}

Appendix B how the internal and boundary values (in volFields and in surfaceFields)
are stored in OpenFOAM R©.

4.2 Laplacian Test

In this problem, gdbOF is used to observe the fields values and the resulting equations
system, in order to infer the correction method for non-orthogonality of the mesh used in
OpenFOAM R© (Jasak presents in his thesis (Jasak, 1996) three methods to determine the non-
orthogonal contribution in diffusion term discretisation: minimum correction, orthogonal cor-
rection and over-relaxed correction5).

The problem to solve is defined in the Equation (7), with the boundary conditions shown
in (8), (9) and (10), and the non-orthogonal mesh presented in Figure 2.

∇ · (ρΓφ∇φ) = 0 (7)
∇φ · n|insulated = 0 (8)
φfixed1 = 273[K] (9)

φfixed2 = φright[K] (10)

4In the case, T is used to represent the scalarField in instead of φ , because OpenFOAM R© uses φ for a
surfaceScalarField that represents the flux thought each face Sf · Uf

5The diffusive term in a non-orthogonal mesh is discretized in the following way: Sf · (∇φ)f = ∆f · (∇φ)f +
kf · (∇φ)f , where Sf = ∆f + kf . The correction methods propose different ways to find ∆f .

Mecánica Computacional Vol XXIX, págs. 3441-3460 (2010) 3451

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

0

1

fixed1

insulated1

fixed2

insulated2

Figure 2: Geometry and patches in Laplacian test (numbers identifies cells).

Constants and initial conditions are: ρ = 1, Γφ = 1 and φ0 = 0[K] ∀ Ω.

Example 10 allows to verify the proper initialization of the internal field. The list shown
presents the values of the field.

Example 10 View internalField values with gdbOF

(gdb) pinternalvalues T
(gdb) $1 = {0,0}

It can be shown analytically that the solution to this problem is a linear function φ(x) =
ax + b, and if φfixed2 = φfixed1 ⇒ a = 0 and the solution is constant, doing unnecessary the
second term in non-orthogonal correction (kf · (∇φ)f = 0), but allows to compare the systems
generated by the different approaches in comparison with the generated in OpenFOAM R©, and
to determine which one is the used method.

Using minimum-correction approach (∆f = d·S
|d| d):

−3.29φ0 + 1.79φ1 = −409.5

1.79φ0 +−3.29φ1 = −409.5

Using orthogonal-correction approach (∆f = d
|d| |S|):

−4.5φ0 + 3φ1 = −409.5

3φ0 +−4.5φ1 = −409.5

Using over-relaxed approach (∆f = d
d·S |S|

2):

−5.25φ0 + 3.75φ1 = −409.5

3.75φ0 +−5.25φ1 = −409.5

Example 11 shows how gdbOF extracts the equations system was shown. Here, the reader
can verify that the over-relaxed approach is implemented in OpenFOAM R©.

J. GIMENEZ, S. MARQUEZ DAMIAN, N. NIGRO3452

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Example 11 Equation System debugging in LaplacianTest

$(gdb) b fvScalarMatrix.C:144
Breakpoint 1 at 0xb71455dc: file fvMatrices/fvScalarMatrix... line 144
$(gdb) run
...
$(gdb) pfvmatrixfull this this.txt
Saved correctly!
$(gdb) shell cat this.txt

-5.25 3.75
3.75 -5.25

(gdb) p *totalSource.v_@2
{-409.5, -409.5}

4.3 Multiphase Test

As the last example, a multiphase solver, namely interFoam is used showing gdbOF func-
tionality. In this case a 2D reference problem is solved, which has analytical solution. Let be a
rectangular domain with a Couette velocity profile (see Figure 4.3), and filled with a light fluid
as initial condition and a domain inlet with a heavy fluid in all extension. The problem to solve
is the evolution of the heavy phase thought the domain along the time.

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

Interface

V = 1 (Moving wall)

V = 0 (Stationary wall)∂α
∂n = 0

∂α
∂n = 0

α = 1

Inlet
∂α
∂n = 0

L = 10

h = 1

x

y

Heavier phase α = 1

Less dense phase α = 0

Figure 3: Geometry in interFoam test

This two phase system is solved by means of a momentum equation (See Equation 11) and
an advection equation for the void fraction function α (See Equation 12) (Berberovic et al.,
2009)

∂ρU

∂t
+∇• (ρUU)−∇• (µ∇U)− (∇U) •∇α = −∇pd − g•x∇ρ+ σκ∇α (11)

∂α

∂t
+∇• (Uα) +∇• [Urα (1− α)] = 0 (12)

In this case, g = 0, ρ = 1 and it can be shown that ∇pd and κ = 0 (no pressure gradient
is needed in a velocity driven flow and curvature vanishes due a linear interface). Taking this
in account, initial linear velocity profile is an spatial solution of Equation 11 so it reduces to
Equation 13.

∂U

∂t
= 0 (13)

Mecánica Computacional Vol XXIX, págs. 3441-3460 (2010) 3453

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

From this conclusion it is clear that streamlines are horizontal, and the heavier phase ad-
vances more quickly as streamlines are closer to the top, giving a linear interface front (See
Figure 4.3). This advancement is governed by an indicator function advective equation which
includes an extra term, suitable to compress the interface (OpenCFD, 2005).

Using Finite Volume Method Equation 12 can be discretized as in Equation 14 (Bohorquez
R. de M., 2008)

αn+1 − αn

∆t
V +

∑
f

[
αnf φ

n
f + αnf

(
1− αnf

)
φr

n
f

]
= 0 (14)

where φnf = Un · Sf , φrnf = Un
r · Sf and superindex n implies the timestep. Ur is the

compressive velocity and is calculated directly as a flux: φrf = nf min

[
Cα

|φ|
|Sf | ,max

(
|φ|
|Sf |

)]
.

Cα is an adjustment constant and nf =
(∇α)f

|(∇α)f +δn| •Sf is the face unit normal flux with δn as

a stabilization factor (Berberovic et al., 2009). φrf values are variable only vertically in this
example and will be checked at debugging time against those can be calculated from theory,
using gdbOF tools. In this case, due how advective terms are calculated there is necessary to
show values at faces.

Domain was meshed as a 3D geometry due to OpenFOAM R© requirements (OpenCFD, 2009)
with a 100 × 10 × 1 elements grid, so each hexahedron has edges of 0.1 units in size. Since
its definition and taking Cα = 1, |Ur| = |U|, therefore φrf = Ur · Sf = 0.01 |Ur|

(
Ǔr · Šf

)
.

So taking three distances from bottom edge of the domain, y = 0.05, y = 0.45 and y = 0.95,
values for φ in faces with Sf aligned with x direction must be |φrf | = 0.005, |φrf | = 0.045 and
|φrf | = 0.095 respectively.

As first stage, it is necessary to find the indices of three cells with such a y coordinates,
taking for example x = 0.05, and using pFindCell tool results shown in Example 12 can be
obtained.

Example 12 View cell index in multiphase problem.

(gdb) pfindcell 0.05 0.45 0.05
RESULTS:
Nearest Cell Centroid: 400
Cell Centroid in which the point is contained (-1=out) : 400

As it was explained in Subsection 3.2 the only index of the cell is not enough to address the
values in the internalField of a given field. Each cell has as many surface values as faces in
the cell, therefore is necessary to show all these values, and each face has an addressing index
not necesarelly correlative.

psurfacevalues gdbOF command simplifies this task. Knowing the index of the cell to an-
alyze, it returns the info on each face about the field indicated in the command line parameters:
boundary face or internal face (categorized according to whether it has a neighbor or not) and
field value. If it is working with a 2D mesh, information is also returned as in a 3D mesh (6

J. GIMENEZ, S. MARQUEZ DAMIAN, N. NIGRO3454

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

faces for a hexahedron), but it indicates on which of these the condition is empty.

To perform this task, different methods of some of the classes in charge of managing OpenFOAM R©

mesh are called by means of various OpenFOAM R© applications (included in gdbOF package)
running on the backend and returning the results (index of cells, or faces) at gdbOF macros.
Then these are responsible for finding the value of the field in debugging time (see Appendix C
or the Subsection 3.2).

So that, applying this command to the previous found cell it is possible to show φ in all faces
of that cell (See Example 13)

Example 13 Example of usage of psurfacevalues for face defined field.

(gdb) psurfacevalues phir 400
internal Face:
$5 = 0
internal Face:
$6 = -0.0045
internal Face:
$7 = 0
empty Face
empty Face
boundary Face:
$8 = 0.0045

Results are consistent with original problem. Two faces are marked as empty because the
mesh has only one cell in depth. This boundary condition is used by OpenFOAM R© to represent
no variability in direction perpendicular to the face, allowing a 2D calculation. Faces 5 and 7
corresponds to top and bottom faces of the cell where flux is null. Finally, faces 6 and 8 have
face normals aligned with the velocity and flux values are that were predicted theoretically for
y = 0.45. Values have different sign due to the faces have opposite normals direction.

5 CONCLUSIONS

OpenFOAM R© is a free software tool that enables high-level programming at the same level
as the mathematical expression that solves the problem. The use of C++ programming language
and all its object-oriented machinery allows a fast and expandable code improving the perfor-
mance of procedural languages. The OOP approach provides greater simplicity for maintenance
and code expansion, since it uses five main features: modularity, abstraction, encapsulation,
inheritance and polymorphism. To complete the machinery, the flexibility of C++ allows to
include non object-based elements, such as operator overloading and the definition of macros
instead of functions.

The downside of all these benefits is an intricate code, which is difficult to learn and analyze.
These difficulties arise, for example, when there are problems with unwanted results, or simply
looking for analyzing if a procedure is properly executed. These tasks require debugging with
gdb, but given the complexity of the aforementioned code it is necessary to expand the capabil-
ities of the debugger with a set of commands that allow simply navigation through the code and
class inspection, giving the place to gdbOF.

Mecánica Computacional Vol XXIX, págs. 3441-3460 (2010) 3455

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

So, gdbOF was presented simplifying the tasks to a single line. In addition, due to the use
of parameters in each command, gdbOF offers the versatility of adapting to different objects
that exists in a typical OpenFOAM R© simulation, such as volFields and surfaceFields each
with its derivatives Scalar, Vector and Tensor. Another benefit presented and tested was the
ability to do geometric searches in the mesh at debugging time, being able to find the index of
a particular cell or face, or the list of faces surrounding a cell. All of this tasks were achieved
through calls to backend applications which are included in the gdbOF distribution package. In
addition to this list of benefits it may be included the ability to obtain the system of equations
associated to the discrete version of the problem, allowing to see it in various formats and ex-
porting it to disk to be manipulated with other software, and the possibility of extracting only a
sub-matrix to analyze only a specific part of it.

All of gdbOF features described above, allows to the user to have greater efficiency and
flexibility in debugging OpenFOAM R©. All the tools included in gdbOF may be a of great to
developers, therefore it is considered that this package can be widely used in the community.

REFERENCES

Berberovic E., Van Hinsberg N., Jakirlic S., Roisman I., and Tropea C. Drop impact onto a
liquid layer of finite thickness: Dynamics of the cavity evolution. Physical Review E, 79,
2009.

Bohorquez R. de M. P. Estudio y Simulación Numérica del Transporte de Sedimentos en Flujos
con Superficie Libre. Ph.D. thesis, Málaga University, Málaga, 2008.

Cary J., Shasharina S., and Cummings J. Comparison of C++ and fortran 90 for object-oriented
scientific programming. Computer Physics Communications, 105(1):20–36, 1997.

Eckel B. Thinking in C++, volume 1 Introduction to Standard C++. Prentice Hall Inc., 2nd.
edition, 2000.

Ewer J., Knight B., and Cowell D. Case study: an incremental approach to re-engineering a
legacy fortran computational fluid dynamics code in C++. Advances in Engineering Software,
22(3):153–168, 1995.

Jasak H. Error analysis and estimation for the finite volume method with applications to fluid
flows. Ph.D. thesis, Department of Mechanical Engineering Imperial College of Science,
Technology and Medicine, 1996.

Mangani L., Bianchini C., Andreini A., and Facchini B. Development and validation of a C++
object oriented CFD code for heat transfer analysis. In ASME-JSME, Thermal Engineering
and Summer Heat Transfer Conference. 2007.

Marinescu D. Stl-views-1.0.3.gdb. 2008.
Matloff N. and Salzman P. The Art of Debugging with GDB, DDD, and Eclipse. No Starch

Press, 1st edition, 2008.
OpenCFD. OpenCFD Technical report no. TR/HGW/02 (unpublished). 2005.
OpenCFD. OpenFOAM, The Open Source CFD Toolbox, User Guide. OpenCFD Ltd., 2009.
Stallman R., Pesch R., and Shebs S. Debugging with GDB: The GNU Source-Level debugger.

GNU Press, Free Software Foundation Inc., 9th edition, 2002.
Weller H.G., Tabor G., Jasak H., and Fureby C. A tensorial approach to computational con-

tinuum mechanics using object-oriented techniques. Computer in Physics, 12(6):620–631,
1998.

J. GIMENEZ, S. MARQUEZ DAMIAN, N. NIGRO3456

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

A APPENDIX A: MATRIX STORAGE IN OPENFOAM R©

The discretisation of a set of differential equations, can be described in matrix form

Ax = b (15)

where A is a sparse block matrix, that can be inverted to solve the system. However OpenFOAM R©

do not use the typical sparse storage form, but uses another form of storage that is called LDU
Addressing. This technique consists in decompose the matrix coefficients in three arrays: one
for diagonal coefficients called diag, and the others two for the non-zero coefficients in lower
and upper triangulars, called lower and upper respectively. Also, exists other two arrays that in-
dicates the position in the matrix of each coefficient, they are called lowerAddr and upperAddr,
where lowerAddr[i] represents the smallest cell’s index (in the lower triangular will the row
index and in the upper triangular will the column index), meanwhile upperAddr[i] represents
the biggest index.

A pseudocode to assemble the full matrix is presented in Code 6.

Pseudo-code 6 Assembly with LDU Addressing.

for k : sizeDiag
A[k][k] = diag[k]

end for

for k : sizeAddr
i = lowerAddr[k]
j = upperAddr[k]
A[i][j] = upper[k]
A[j][i] = lower[k]

end for

It should be stressed that in case of a symmetric matrix, the upper and lower vectors are
identical, so that only one of them is stored. To access to the complementary vector, the original
one is referenced.

A.1 OpenFOAM R© Files References
• ∼/OpenFOAM/OpenFOAM-<version>/src/finiteVolume/fvMatrices/fvMatrix/fvMatrix.H

• ∼/OpenFOAM/OpenFOAM-<version>/src/finiteVolume/fvMatrices/fvMatrix/fvMatrix.C

• ∼/OpenFOAM/OpenFOAM-<version>/src/matrices/lduMatrix/lduAddressing/lduAddressing.H

• ∼/OpenFOAM/OpenFOAM-<version>/src/matrices/lduMatrix/lduAddressing/lduAddressing.C

Mecánica Computacional Vol XXIX, págs. 3441-3460 (2010) 3457

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

B APPENDIX B: VOLFIELDS AND SURFACEFIELDS

volFields contains values in each cell centroid, this make up the internalField, and the
index in this array is equivalent to the cell index in the mesh. Each patch is represented with a
surfaceField, and all together make up the boundaryField.

Pseudo-code 7 Recovering Internal and Boundary values

l = myVolField.internalField.size_
i = 0
while(i<l)

intFieldValue = myVolField.internalField.v_[i]
//do something
i++

l = myVolField.boundaryField.ptrs_.size_
while(i<l)

patch = myVolField.boundaryField.ptrs_.v_[i]
l2 = patch.size_
j = 0
while(j<l2)

patchFieldValue = patch.v_[j]
//do something
j++

i++

It should be mentioned that the value of field can be scalar, vector or tensor, depending
on the specialization of volField (volScalarField, volVectorField or volTensorField).

The difference between volFields and surfaceFields, is that the first one stores in internalField

the field values at the centroids of each cell, while the second stores in the internalField the
field values at the internal faces (those that have owner and neighbor). Retrieving the values
is similar to that was previously presented (Pseudo-code 7), but require some manipulation of
these values to determine which values correspond to which faces of the cell, since the field
values on each face for a given cell are not contiguous in the array. (see Appendix C).

B.1 OpenFOAM R© Files References
• ∼/OpenFOAM/OpenFOAM-<version>/src/OpenFOAM/fields/GeometricFields/GeometricField.H

• ∼/OpenFOAM/OpenFOAM-<version>/src/OpenFOAM/fields/GeometricFields/GeometricField.C

• OpenFOAM R© Programmer’s Guide, chapter 2.3: Discretisation of the solution domain.

J. GIMENEZ, S. MARQUEZ DAMIAN, N. NIGRO3458

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

C APPENDIX C: VALUES IN CELL FACES OF SURFACEFIELDS

This appendix explains how the fields values in cells and in each face that make up the cell
are stored.

Given a point and using mesh search methods (implemented with octrees) provided OpenFOAM R©

it is possible to find the index of the cell whose centroid is closest to the point or in which this
point is contained.

This index is directly used in collecting the field value (in volFields) for that cell. An
example of this technique is presented in the Pseudo-code 8.

Pseudo-code 8 Recovering field value

cellIndex = mesh.searchCellIndex(point)
fieldValue = field.internalField.v_[cellIndex]

Nevertheless, in the case of values on the faces of the cell a disadvantage arises, it is that
there is no data structure to map cellIndex => facesIndex (where facesIndex is a vector
with faces indexes in a surfaceField) so that the search should be done through the faces list,
checking if the cell is the face’s owner or neighbor.

In the case of inner faces, the face index found is that allows to access the internal surfaceField
to extract the value of that field in the face. But in the case of boundary faces, a distinction have
to be done because belonging to a patch implies a local index of the face within the patch.
OpenFOAM R© includes methods that simplifies the search of the local index to the simply call-
ing of a function.

An pseudocode for the case of surfaceField is presented in the Pseudo-code 9.

Pseudo-code 9 Recovering field faces values

cellIndex = mesh.searchCellIndex(point)
for f : nFaces

fieldFaceValue = false
if isInternalFace(f)

if owner[f]==cellIndex || neighbor[f]==cellIndex
fieldFaceValue = field.internalField[f]

else
if owner[f]==cellIndex

patchIndex = whichPatch(f)
f_local = whichFace(f,patchIndex)
fieldFaceValue = field.boundaryField[patchIndex][f_local]

if(fieldFaceValue)
//do something with fieldFaceValue

end for

C.1 OpenFOAM R© Files References
• ∼/OpenFOAM/OpenFOAM-<version>/src/meshTools/meshTools/meshTools.H

Mecánica Computacional Vol XXIX, págs. 3441-3460 (2010) 3459

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

• ∼/OpenFOAM/OpenFOAM-<version>/src/meshTools/meshTools/meshTools.C

• OpenFOAM R© Programmer’s Guide, chapter 2.3: Discretisation of the solution domain.

J. GIMENEZ, S. MARQUEZ DAMIAN, N. NIGRO3460

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

	INTRODUCTION
	Problems with basic debugging
	Advanced Debugging
	System matrix
	Mesh Search

	Tests
	Scalar Transport Test
	OpenFOAM® Assembly

	Laplacian Test
	Multiphase Test

	Conclusions
	Appendix A: Matrix Storage in OpenFOAM®
	OpenFOAM® Files References

	Appendix B: volFields and surfaceFields
	OpenFOAM® Files References

	Appendix C: Values in cell faces of surfaceFields
	OpenFOAM® Files References

